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Considerations in the design of a finite-volume
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Todd D. Ringler

Abstract This chapter provides an end-to-end discussion of issues related to issues
in the design and construction of dynamical cores. The governing equations of mo-
tion are derived from basic principles cast in the Lagrangian frame of motion. The
Reynolds Transport Theorem is derived so that these conservation statements can be
recast in their weak, integral form in the Eulerian reference frame. Special attention
is given to the relationship between the momentum equation and vorticity dynamics.
The principles of conservation of circulation and vorticity are derived in the contin-
uous system. It is demonstrated that the kinematic principles related to circulation
and vorticity can be carried over exactly into the discrete system. The analysis is
conducted in an idealized, two-dimensional setting that ismeant to serve as a pro-
totype system for the consideration of the full three-dimensional general circulation
of the atmosphere and ocean.

1 Introduction

More than forty years after the first global models for the simulation of the fluid
motion in the atmosphere and ocean appeared, research into the construction of at-
mosphere and ocean ”dynamical cores” has never been more vibrant. The dynamical
core refers to the fluid-dynamic core of an atmosphere or ocean general circulation
model; the part of the model that evolves the distribution ofmass, momentum and
tracer constituents forward in time. The diversity of approaches that are being ex-
plored to simulate the evolution of mass, momentum and tracers in the atmosphere
and ocean systems points to both the richness and complexityof the problem.

The motivation for this chapter is to present an ”end-to-end” view in the design
of numerical models used for the simulation of fluid motion inthe atmosphere and

Todd Ringler
Theoretical Division, Los Alamos National Laboratory, LosAlamos, NM 87545,
e-mail: ringler@lanl.gov

1



2 Todd D. Ringler

ocean. The process starts with a rigorous construction and description of the un-
derlying continuous system. The process ends with the specification of a numerical
model that is suitable for its target application. Both the beginning and end are es-
sentially applied math activities, with the former manipulating continuous equations
and the latter manipulating discrete equations. In betweenthese ends is the ”art” of
constructing dynamical cores. If the process were as simpleas discretizing a set of
continuous equations, we would not see the vibrancy in dynamical core develop-
ment that we see today. A host of subtle, yet profound, questions such as ”which
form of a continuous equations should be the starting point for the discrete model?”
fall squarely in the middle of the end-to-end design process. This chapter explores
some of those questions in order to illuminate the intricacies of the decisions that
have to be made in the design process.

The price-to-be-paid for this end-to-end view is scope. Many relevant aspects of
the design process have been omitted in order to contain the discussion to an appro-
priate length. The discussion is focused primarily on one important component of
a dynamical core: the prediction of momentum. This proves tobe an important and
rich topic for several reasons. First, since the velocity that is derived from momen-
tum acts as the transport velocity for the mass and tracers fields, a robust simulation
of velocity is a prerequisite for any viable dynamical core.Furthermore, as the ve-
locity field responds to changes in the applied forces it mustalso satisfy certain
kinematic conditions, such as conservation of vorticity. Satisfying the desire to ac-
curately modelF = ma while also accommodating important kinematic constraints
is a challenge for any numerical model. And finally, the majority of the nonlinearity
in dynamical core simulations arises from the simulation ofthe evolving velocity
field. In many ways, getting the evolution of momentum ”right” is the hardest part
in the design and construction of a dynamical core.

The analysis presented below is conducted in a very simple, two-dimensional
framework and is, in some ways, quite removed from the globalthree-dimensional
motions that compose the atmosphere and ocean general circulations. As such, it is
important to address the relevance of this chapter to the modeling of the more com-
plicated three-dimensional systems. First and foremost, the analysis conducted here
is a prerequisite for the construction of a robust three-dimensional model. In that,
what follows below could be considered a set of necessary, but not sufficient, prop-
erties of robust three-dimensional models of atmosphere and ocean circulations.
Since the general circulation of the atmosphere and ocean occurs primarily along
a vertical stack of two-dimensional sheets, it is folly to suppose that a numerical
methods that performs poorly in the solution of the two-dimensional system will
perform acceptably in the solution of the three-dimensional system. Second, while
the two-dimensional system might seem trivial in some respects, many numerical
methods used in the modeling of geophysical fluid dynamics fall short when viewed
from the perspective of vorticity dynamics. Vorticity dynamics largely represent the
”slow modes” of these system where relatively small truncation errors can accumu-
late and, eventually, completely corrupt the simulation. The struggle to control the
form of truncation error with respect to vorticity dynamicsis as important today as it
was when Arakawa wrote the seminal paper on the topic in 1966 (Arakawa, 1997).
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And finally, this chapter is meant as an introduction to the concept of designing nu-
merical methods that respect the continuous system in some relevant aspects. For
this goal, the very simple, two-dimensional framework is perfectly appropriate.

The omissions in the discussion are sometimes glaring. For example, the impor-
tance of accurately simulating transport phenomena in dynamical cores is largely
omitted [check cross reference]. The notable exception is the detailed discussion on
the relationship between fluid acceleration and absolute vorticity transport. The next
glaring omission is the lack of discussion of potential vorticity and its relationship
to the velocity field; the discussion is based on an analysis of the absolute vortic-
ity field. While absolute vorticity is connected only to the velocity field, potential
vorticity is connected to both the velocity field and to the mass field. The analy-
sis below can (and has) been extended from absolute vorticity to potential vorticity
(Ringler et al, 2010). The choice was made based on the beliefthat a firm grasp of
the absolute vorticity dynamics is a prerequisite to understanding the potential vor-
ticity dynamics. And finally, while the primary target geometry of dynamical core
is the surface of the sphere, thef-planeapproximation is made through out. All of
the analysis carries over to the sphere, the simplification to the f-plane is for the
sake of conciseness in presentation. And finally, while the focus is on the relation-
ship between the evolution of velocity and its relationshipto vorticity dynamics, we
need to be sure to understand that the velocity equation is derived fromF = ma and
that the system can not be closed without the knowledge of thedensity field and the
constitutive equation relating density to pressure.

The discussion unfolds in the following manner. First, the relevant evolution
equations are constructed from the Lagrangian perspective. These conservation
statements are then transferred to an Eulerian reference frame through the use of the
Reynolds Transport Theorem (RTT). Since a full discussion of RTT is rarely found
in texts related to geophysical fluid dynamics, RTT is derived from first principles
for completeness. Following the development of the evolution equations appropriate
for an Eulerian reference frame, a qualitative analysis is conducted of the various
”flavors” of the momentum equation that can be used as the basis for a numerical
solution. The discussion then moves into the setting of discrete numerics by asking
the most basic question of ”How we begin the process of discetization?” And fi-
nally, a numerical model is developed that meets the criteria developed throughout
the entire discussion. The numerical model is constructed in such a way that it can
easily be implemented in development environments such as MATLAB.

2 Reference Frames and Conceptual Constructs

When we consider the climate of the atmosphere or ocean, we expend considerable
effort on the phenomena of transport, such as the transport of fluid density from
one region to another, or the transport of tracer substance from a source region to
a sink region, or the transport of momentum from one area to another. In almost
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all cases, the most natural setting to consider transport istheLagrangianreference
frame where we, as the observer, move with the fluid.

To start, let us define a volume of fluid,V, composed of a set of particles,R,
enclosed at all times by a surface,S. Each particle in the set ofR is denoted by
its vector positionX(t) = X1e1 + X2e2 + X3e3. As indicated,X is only a function
of time. Also, e1,2,3 is the set of orthogonal unit vectors spanning theR

3 space.
See Figure 1. The idea of constructing the volume as a set of particles is entirely
a conceptual construct; the particles are simply the most basic ”element” that is
used to define all other features; lines, surfaces and volumes can be ”built” from
sets of particles. Each particle is accompanied by an arbitrarily long list of labels
representing such things as the particle position (X), density (ρ) and velocity (u).
The validity of such an approach is that the particles can be made arbitrarily small
and, thus, approach the continuum limit.

V0

V (t)

X

X

V (t) = J ∗ V0

u =

dX

dt

e1

e2

e3

M =

∫

VL

ρ(x, t)dV =

∫

V0

ρ(X, t)J dV0

Fig. 1: The Lagrangian perspective. Att ime= 0 a volume of fluid,V0, is identified. The volume
is composed of a set of particles,R, with each particle identified by its vector positionX. Even
though the volume is sheared, rotated and dilated as it movesthrough space, it is always composed
of the same set of particlesR. Thus, the boundary surroundingV is impermeable. The Jacobian,J,
integrates the time-rate-of-change ofV and represents the fractional change in the volume between
t ime= 0 andt ime= t. The volume of fluid at any timet is equal to its volume at some initial time,
V0, times the fractional change in volume,J. Since the boundary ofV is impermeable, the mass,
M, within V is a constant in time.
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The amount of mass,M, or tracer substance,Q, within the boundary surface can
be expressed as

M =

∫

V(t)

ρ (x,t)dV (1)

Q =

∫

V(t)

ρ (x,t)q(x,t)dV (2)

where the limits of integration span the volumeV(t). The dependence ofV on time
is retained to make clear that the limits of integration, in general, change in time.ρ
is the fluid density with units ofmasspervolumeandq has units of concentration,
such askgof Q perkgof fluid.

Assume that no mass or tracer substance is exchanged across the boundaryS
such that

dM
dt

= 0 (3)

and
dQ
dt

= 0. (4)

Equation (3) and (4) define the material derivative as measured in the Lagrangian
reference frame of motion by stating that the amount ofM andQ is invariant in time
when following a volumeV(t) that is always composed of the same set of particles
included inR.

Another reference frame of great utility is theEulerian reference frame where
the observer remains at a fixed position in space, as opposed to moving in space
along particle trajectories. The material derivative (of,say,Q) is expressed in the
Eulerian reference frame as

dQ
dt

∣

∣

∣

∣

f luid particle
≡

DQ
Dt

=
∂Q
∂ t

+u ·∇Q (5)

where, as shown in Figure 1,u is the particle velocity defined as

u =
dX
dt

. (6)

The gradient in (5) is define as

∇Q =
∂Q
∂x1

e1 +
∂Q
∂x2

e2 +
∂Q
∂x3

e3. (7)

Both terms on the right-hand side (RHS) of (5) are evaluated at a fixed time and
at a fixed point. Even when the material derivative is identically zero, a non-zero
time-rate of change,∂{}∂ t , can be observed at a fixed location due to the differential
transport,u ·∇{}, into and out-of a specific region. An Eulerian observer essentially
balancesdM

dt = 0 by measuring the differential transport at one location, then setting
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the local time tendency to the value required to make the material derivative sum to
zero.

The blending of the Lagrangian and Eulerian reference frames through the use
of Arbitrary Lagrangian Eulerian (ALE) (Hirt et al, 1997) methods is increasingly
popular in climate system modeling. While the full discussion of ALE methods is
beyond the scope of this chapter, the analysis of the continuous system given in the
following section can be extended to ALE frameworks.

3 Evolution Equations from a Lagrangian Perspective

The elegance and simplicity of the Lagragrian reference frame is clearly apparent
in the equations (1) to (4). In a model of the global atmosphere or ocean we could
envision decomposing the domain into a set of Lagrangian volumes where each vol-
ume is separated by an invisible, yet impermeable, barrier.The numerical algorithms
would then track the ”blobs” as they move through space beingpushed, squeezed
and rotated due to their contact with neighboring blobs. In such a model the phe-
nomena of transport would be remarkably well simulated; no mass or tracer sub-
stance would be erroneously exchanged between the Lagrangian volumes. In fact,
ideas along these lines are under development by Haertel et al (2009) and Dixon and
Ringler (2010, submitted).

The primary reason that no robust climate models are constructed entirely in a
Lagrangian reference frame is due to the rapid deformation of the Lagrangian con-
trol volumes. As seen in Figure 1, while the mass within the volumeV is constant
in time, the volume itself can evolve in time through rotation, dilation and shear-
ing. Figure 2 demonstrates what happens to control volumes in typical geophysical
flows. Initially compact control volumes are stretched due to shearing. The stretch-
ing creates long filaments that are folded. Tracking these rapidly distorting control
volumes poses a tremendous challenge for numerical modeling.

So while the Lagrangrian reference frame proves exceptionally useful for the
construction of the evolution equations, numerical modelsare currently restricted to
reference frames that are essentially Eulerian. As a result, we require a robust means
of transforming conservation laws and evolution equationsbetween the Lagrangian
and Eulerian frames of motion. While several methodologiesare available for trans-
forming between these reference frames, an approach based on the Reynold’s Trans-
port Theorem (RTT) is particularly appealing for two reasons. First, the RTT is for-
mulated in an integral form that leads naturally to equations suitable to finite-volume
models that will be discussed in Section 5 and 6. Second, a generalization of the RTT
allows for the seamless transformation between the Lagrangian reference frame and
any other reference frame that falls between the Lagragian (moving) and Eulerian
(fixed) reference frame. Thus, the emerging type of models based on ALE methods
are fully accommodated in approaches based on the RTT; this chapter serves as a
useful waypoint on the path to developing numerical models in the ALE reference
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Fig. 2: In the highly nonlinear flows that characterize fluid motion in the atmosphere and ocean,
Lagrangian control volumes are rapidly distorted due the presence of strong shear, rotation and
dilation. The rapid distortion of Lagrangian control volumes makes the formulation of numerical
models within the Lagrangian reference frame an extremely difficult challenge.

frame. A full analysis of RTT and its generalizations can be found in F. White’s
Fluid Mechanics textbook (White, 2008).

3.1 The Reynolds Transport Theorem

Let F be any intensive property of the fluid. Examples ofF includeρ with units of
mass per unit volume,ρq with units of tracer mass per unit volume orρ u with units
of momentum per unit volume. The conservation statement forF in the Lagrangian
reference frame is expressed as

d
dt





∫

VL

F(x,t)dV



 = 0. (8)
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Note that (3) is included as a specific example of (8).1

The subscript ”L” on the volumeV in (8) has been added to denote that the
volume is being viewed by an observer moving in the Lagrangian reference frame.
The goal is to move the time derivative inside the volume integral and, thereby, allow
for the integration to occur over the same volumeV but with respect to an observer
in a different reference frame. This is somewhat problematic since the limits of
integration,VL, are a function of time.

The way around this difficulty is to make use of the fact that the volumeVL is
composed of the same set of particlesR at every instant in time. Thus, as shown in
Figure 1, the differential volume elementdV at some timet is related to its value at
time t = 0 as

dV = JdV0 (9)

whereJ accounts for the fractional change in the volume element between time 0
and timet. Conceptually we can consider each of these differential fluid elements
dV0 as being associated with a single particle. Thus, (8) can be transformed to

d
dt





∫

VL

F(x, t)dV



 =
d
dt





∫

V0

F(X,t)J dV0



 = 0. (10)

Note that both sides of (10) integrate over the same group of particlesR, but do so
in different ways. The LHS indirectly sums over the particles by integrating overVL,
which is identical to spatial extent spanned byR at timet. The RHS explicitly sums
over the particle positionsX at timet included inVL and weights each particle by its
initial volume,V0, times the fraction change inV0 betweentime= 0 andtime= t.
Now that the limits of integration on the RHS are not a function of time, the order
of integration and differentiation can be exchanged. In particular, we can write

d
dt

∫

V0

F(X, t)J dV0 =

∫

V0

[

J
D
Dt

F(X,t)+F(X,t)
D
Dt

J

]

dV0 = 0. (11)

Just asJ accounts for the time-integrated factional change in the size of the volume
elements,DJ

Dt accounts for the instantaneous rate-of-change in the size of the volume
elements, namely

DJ
Dt

= J ∇ ·u . (12)

Equation (12) states that the rate-of-change of a Lagrangian volume (JV0) is equal to
its present volume (JV0) times the divergence of the fluid; sinceV0 is not a function
of time it cancels in (11). Using (12) we can simplify (11) to

∫

V0

[

D
Dt

F(X,t)+F(X,t)∇ ·u
]

dV0 = 0. (13)

1 In general the RHS of (8) need not be zero. A source term forF can be placed on the RHS of (8).
The proper evaluation of this source term is along the volumetrajectory.
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We can expand the first term in (13) using the definition of the material derivative
(5) and combine terms to obtain

∫

V0

[

DF
Dt

+F∇ ·u
]

dV0 =
∫

V0

[

∂F
∂ t

+ ∇ · (F u)

]

dV0 = 0. (14)

The broad utility and analytic power of (14) is in the choice of V0. Note that the
only requirements onV0 are the following:V0 is coincident withVL at some instant
in time andV0 is fixed in space. Of particular interest is whenVL andV0 span the
same volume of spaceat the instanttime= 0. At this instant in time, we can see that
V0 is the Eulerian representation ofVL, in that it spans the same volume but is not
moving with the fluid. The volumesV0 andVL only differ in the reference frame of
the observer, with the former in the Eulerian reference frame and the latter in the
Lagrangian reference frame. RelabelingV0 asVE to emphasis this point2, we can
now write

d
dt





∫

VL

F(x, t)dV



 =

∫

VE

[

∂F
∂ t

+ ∇ · (F u)

]

dV =

∫

VE

[

DF
Dt

+F∇ ·u
]

dV = 0. (15)

Equation (15) is the Reynolds Transport Theorem (RTT).3 The only way to satisfy
(15) for anyVE is to guarantee that

∂F
∂ t

+ ∇ · (F u) = 0. (16)

A more useful form of (15) is obtained by applying the divergence theorem to the
∇ · (F u) term to yield

d
dt





∫

VL

F(x, t)dV



 =

∫

VE

∂F
∂ t

dV +

∫

SE

F u ·ndS= 0 (17)

whereSE is the surface boundingVE andn is the unit vector normal toSE directed
outward. The RTT states that the time-rate-of-change of anyintensive quantityF
inside a volumeVL following the fluid motion can be computed at any instant in time
as the sum of the time-rate-of-change ofF insideVE and the net flux ofF across
the surface boundingVE. See Figure 3. The RTT allows for conservation statements

2 The Eulerian volume,VE , is often referred to as a “control volume” when discussed inthe context
of finite-volume methods
3 The term ”Reynolds Transport Theorem” is most commonly usedwhen the volumeVL is trans-
ported with the fluid, as is the case for the first term in (15). When the volume is not being ob-
served in the Lagrangian reference frame, a generalizationof RTT still holds and that theorem is
commonly referred to as the ”Generalized Transport Theorem.”
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to be naturally cast in a integral form4 as shown in (17). With the machinery of
the RTT in place, we can easily apply it to any conservation statement to obtain an
analytic expression of the dynamical core expressed in integral form.

VE

VL(t)

Time-rate-of-change
of F within the Eulerian

control volume.

Rate at which F is 
removed from the 

Eulerian control volume.

u

d

dt





∫

VL

F (x, t)dV



 =

∫

VE

∂F

∂t
dV +

∫

SE

F u · n dS = 0

Fig. 3: An illustration of the Reynolds Transport Theorem. At some timet = 0, the volumeVL is co-
incident with the volumeVE . The Eulerian volumeVE remains fixed in place while the Lagrangian
volumeVL deforms toVL(t) at timet. The conservation statement forF is that the integral ofFdV
overVL is constant for all time. The Reynolds Transport Theorem allows for the computation of
the time-rate-of-change forF within VE by computing the flux ofF that is transported acrossVE

over timet.

3.2 Conservation of Mass and Tracer Substance

Applying (17) to the conservation of mass and tracer expressions in (3) and (4), we
obtain

4 The integral formis also referred to as theweak formsince, in general, the statements hold only
for a compact region of integration.
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d
dt





∫

VL

ρdV



 =
∫

VE

∂ρ
∂ t

dV +
∫

SE

ρ u ·ndS= 0, (18)

d
dt





∫

VL

ρqdV



 =

∫

VE

∂ (ρq)

∂ t
dV +

∫

SE

ρqu ·ndS= 0. (19)

Equations (18) and (19) are inextricably coupled and a discussion of the coupling
is worthy of its own chapter. A glimpse at this entanglement can be seen by simply
definingGm = ρ u ·n and rewriting (18) and (19) as

d
dt





∫

VL

ρdV



 =

∫

VE

∂ρ
∂ t

dV +

∫

SE

GmdS= 0, (20)

d
dt





∫

VL

ρqdV



 =

∫

VE

∂ (ρq)

∂ t
dV +

∫

SE

qGmdS= 0. (21)

Gm is the mass flux per unit area acrossSE. Equation (21) shows that a prerequisite
to computing the tracer flux acrossSE is the knowledge of the mass fluxGm. In fact,
when written in this manner it is clear that tracer transportis meaningless without the
underlying mass transport fieldGm. Those transport algorithms that fully recognize
the relationship between mass and tracer transport are mostappropriate for use in
climate simulations.

Differential forms of mass and tracer transport can be obtained directly from (16)
or by lettingVE → 0 in (18) and (19) to obtain

∂ρ
∂ t

+ ∇ · (ρ u) = 0 (22)

and
∂ (ρq)

∂ t
+ ∇ · (ρqu) = 0. (23)

Equations (22) and (23) can be written in material derivative form as

Dρ
Dt

+ ρ∇ ·u = 0 (24)

and
Dq
Dt

= 0 (25)

The last two forms will be used in the discussion below.
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3.3 A Statement of Newton’s Second Law

In order to complete the Lagrangian perspective illustrated in Figure 1, we need to
describe how the volume evolves in time, i.e. what determines the set of particle
velocitiesu that will dilate, rotate and shear the volumeVL shown in Figure 1? In
this case the intensive quantity is momentum per unit volume,

P = ρ u . (26)

In its most basic form, the statement of Newton’s Second Law is

dP
dt

=
d
dt





∫

VL

P(x,t)dV



 =
∫

VL

FbdV +
∫

SL

FsdS (27)

whereFb is abody forceacting throughout the volumeVL andFs is asurface force
acting on the surfaceSL. Fb has units of force per unit volume andFs has units of
force per unit area. Applying RTT as expressed in (13) to (27)yields

∫

VE

[

D
Dt

(ρ u)+ (ρ u)∇ ·u
]

dV =

∫

VE

FbdV +

∫

SE

FsdS. (28)

Expanding the material derivative and combining terms results in

∫

VE

[

ρ
Du
Dt

+u
(

Dρ
Dt

+ ρ∇ ·u
)]

dV =

∫

VE

FbdV+

∫

SE

FsdS. (29)

The term
(

Dρ
Dt + ρ∇ ·u

)

is a statement of conservation shown in (24) and is iden-

tically zero. The momentum equation now has a form that is analogous toma = F
with

∫

VE

ρ
Du
Dt

dV =

∫

VE

FbdV+

∫

SE

FsdS (30)

where Du
Dt is exactly equal to the particle acceleration. The specific forces that are

applied to the RHS can range from the Coriolis force5 to the pressure gradient force
to surface drag to shear stress, just to name a few. The focus here will be on the
forces responsible for geostrophic balance: Coriolis and pressure. In addition, the
Coriolis force is representative of a body force with the integration overVE, and the
pressure force is representative of a surface force with theintegration overSE. The
Coriolis force can be expressed as

5 The Coriolis force is anapparentforce that arises due to casting the equations of motion in
a non-inertial, rotating reference frame. Both the Lagrangian and Eulerian reference frames are
measured relative to the underlying rotating reference frame. If the system of equations were cast
in an inertial reference frame, then the Coriolis ”force” would not be present.



Momentum, vorticity and transport 13

∫

VE

FbdV = −
∫

VE

fo k×(ρ u) dV (31)

wherefo is the Coriolis parameter that is assumed to be a constant (i.e. af-planeap-
proximation has been assumed) andk is the unit vector pointing in the local vertical
direction. The pressure force can be expressed as

∫

SE

FsdS= −

∫

SE

pn dS= −

∫

VE

∇pdV (32)

wheren is the outward directed normal vector toSE. The negative sign on thepn
term in (32) is because, by definition, pressure ”pushes” inward onSE resulting in a
force directed in the−n direction. Equation (32) also uses the divergence theorem
to transform the pressure force from an integral overSE to an integral overVE.

LettingVE → 0 allows (30) to be expressed in its differential form as

Du
Dt

= − fo k×u−
1
ρ

∇p. (33)

One numerical method that will be of particular interest below is the “finite-
volume approach.” In this approach, we retain prognostic equations formean values
over discrete regions. As a result, the weak or integral formof (33) is more amenable
to a finite-volume approach. In order manipulate the momentum equation shown in
(33) into weak form, we can apply (17) to the intensive quantity P = ρ u to obtain

∫

VE

∂ (ρ u)

∂ t
dV+

∫

SE

(ρ u) u ·ndS=

∫

VE

FbdV +

∫

SE

FsdS. (34)

With examples ofFb andFs in place, the integral form of the momentum equation
becomes

∫

VE

∂ (ρ u)

∂ t
dV +

∫

SE

(ρ u) u ·ndS= −

∫

VE

fok×(ρ u) dV−

∫

SE

pn dS. (35)

Figure 4 illustrates the various terms involved in (35). AllowingVE → 0 in (35) and
transforming the 2nd and 4th term using the divergence theorem gives

∂ (ρ u)

∂ t
+ ∇ · (ρ u u) = − fok×(ρ u)−∇ · p. (36)

We have developed several different analytic forms ofF = ma in this section.
In particular, a particle-based formulation of momentum isshown in (33) and a
control-volume formulation is shown in (35). When constructing a numerical model,
each form will have its own advantages and disadvantages. Wewill return to this
discussion in Section 4.
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P

u · n

ρu

∫

VE

∂ (ρu)

∂t

∫

SE

(ρu) u · n dS

−

∫

SE

pn dS = 0

−

∫

VE

f × ρu = 0

−Pn

Fig. 4: A control volume perspective of conservation of momentum: The time-rate-of-change of
momentum,ρu, withinVE is due to three mechanisms. The first is the apparent body force,− fok×
u, acting over the entire control volumeVE . The second is due to the pressure force acting along the
boundary ofVE . And the last mechanism is the transport of momentum,ρu, across the boundary
of VE . Other mechanisms such as dissipation and external sourcescan also be included.

3.4 Dynamics of Vorticity

By usingF = ma to construct the evolution equation for velocity or momentum,
we are describing how a particle (33) or a region of fluid (35) responses to applied
forces. In addition to the balance-of-forces in the momentum equation, there are
kinematicconstraints on the structure of the velocity field. A vector velocity field
can always be described as a sum of two vector velocity fields where one vector
field is purely rotational and the other vector field is purelydivergent. This is known
as the Helmoltz Decomposition6. The Helmoltz Decomposition states that we can
always decompose a vector field as

u = uδ +uζ (37)

6 The simplification to singly-connected domains extending to infinity is made here for clarity in
presentation, see (Batchelor, 1967) page 85 for a full discussion.
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with
∇ ·u = ∇ ·uδ = δ , (38)

and
∇×u = ∇×uζ = ζ , (39)

whereδ is the scalar divergence field associated withu andζ is the vector vorticity
field associated withu. Equations (38) and (39) show that the divergent compo-
nent ofu is contained entirely inuδ and the rotational component ofu is contained
entirely inuζ . Given a divergence and vorticity field, the velocity field can be deter-
mined by first finding the potential fields consistent withδ andζ as

∇2φ = δ , (40)

and
∇2 β = ζ (41)

and then differentiating the potential fields to obtain the velocities as

∇φ = uδ , (42)

and
∇×β = uζ . (43)

Solving (40) and (41) for the potential fields requires the inversion of the∇2 opera-
tor.7 While the Helmoltz Decomposition holds for three-dimensional flows, we will
limit the velocity to 2-D planar flows in the following section.

Broadly speaking, the rotational component of the velocityfield, uζ , is associ-
ated with slow modes, such as Rossby waves, and the divergentcomponent of the
velocity field, uδ , is associated with fast modes, such as gravity waves. An ade-
quate representation of both the rotational and divergent components of motion is a
prerequisite to robust simulations of geophysical fluid dynamics.

From a climate modeling perspective, avoiding the spuriousforcing of the rota-
tional component of the velocity field is of great concern. Since the vorticity field
tends to evolve slowly in time via transport (i.e. it is a slowmode), errors in the
evolution of the rotational component of velocity tend to beadvected along with the
fluid flow and, thus, accumulate in time. Discrete numerical models with spurious
forcing of the vorticity field resort, inevitably, to inappropriately large levels of dis-
sipation in order to control the spurious accumulation of vorticity variance at the
model grid-scale.

Throughout the remaining sections of this chapter a tremendous amount of dis-
cussion will focus how to design numerical methods that appropriately solveF = ma
while avoiding any spurious forcing of the vorticity field. We will begin this discus-
sion by developing conservation statements in the continuous system regarding how

7 In singly-connected domains, like the entire surface of thesphere, no additional boundary condi-
tions are required to solve (40) and (41). In multi-connected domains, additional boundary condi-
tions are required to close the system.
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the rotational component of the velocity fieldshouldevolve in time. Later sections
will focus on how to build these conservation statements into the discrete system.

3.4.1 Conservation of Circulation

Circulation measures the mean rotation around a material contour (see Figure 5).
Circulation is essentially the area-weighted representation of vorticity. In the dis-
cussion of circulation and vorticity, we will limit the velocity field to two spatial
directions, such as the surface of a plane. The reduction in the space spanned by
the velocity field means that volume integrals in RTT reduce to surface integrals
and surface integrals in RTT reduce to contour integrals. The relativecirculation is
defined as

Γ r
c(t) =

∮

c(t)

u ·dr =
∫

S(t)

(∇×u) ·n dS=
∫

S(t)

ζ ·n dS (44)

whereΓ r
c(t) measures the mean rotation produced by the velocity fieldu around a

c(t) that moves with the material particles. Heren is the outward directed normal to
dS; for the 2D system considered heren is the local vertical, thusζ ·n measures the
component of vorticity in the vertical direction. The limits of integration are around
the contourc(t), or over the areaS(t) associated with the contour. The explicit de-
pendence on time has been retained inc(t) andS(t) to emphasize that the limits
of integration are a function of time. All analysis in this section will take place in
the Lagrangian reference frame; the use of RTT to transform the conservation state-
ments to the more practical Eulerian reference frame will bedone in the following
section.

The first task is to determine the appropriate conservation statement for circula-
tion within a Lagrangian control area. Note that since the contour of integration in
(44) moves with the fluid, the contour is composed of the same set of particles for
all time. Applying the time derivative to (44) yields

d
dt

Γ r
c(t) =

d
dt

∮

c(t)

u ·dr =

∮

c(t)

[

dr ·
du
dt

∣

∣

∣

∣

particle
+u ·

d (dr)
dt

]

. (45)

Since the elementdr is transported with velocityu, its time-rate-of-change can be
expressed as

d (dr)
dt

= dr ·(∇u) . (46)

The RHS of (46) measures the deformation and rotation ofdr due to spatial varia-
tions in theu field.8 Using (46) in (45) yields

8 Equation (46) is obtained by noting thatd(dr)
dt = u(x+dr )− u(x), expandingu(x+dr ) in a

Taylor series and retaining the first two terms.
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      is the material loop 
moving with the fluid.
c(t)

dr     is an infinitesimal
segment of       .c(t)

[u×dr] · fo k

the rate at which planetary 
vorticity is swept by the 
transport of         by    .c(t)

u

dr

u

d

dt
Γ

a

c(t) =
d

dt







∫

S(t)

η dS






= 0

Γ
r

c(t) =

∮

c(t)

u · dr =

∫

S(t)

∇× u dS =

∫

S(t)

ζ dS

Fig. 5: A graphical representation of circulation.

d
dt

Γ r
c(t) =

∮

c(t)

[

Du
Dt

+ ∇
(

|u|
2

)]

·dr =

∮

c(t)

Du
Dt

·dr (47)

where (5) is used to recast the time derivative ofu as a material derivative. The
relationship between the evolution of circulation andF = ma is becoming apparent
with the appearance of theDu

Dt in (47). If we substitute in the form of the momentum
equation defined in (33) we obtain

d
dt

Γ r
c(t) =

∮

c(t)

[

− fok×u−
∇p
ρ

]

·dr . (48)
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The first source of relative circulation on the RHS of (48) is related to the amount
of planetary vorticity ”captured” inc(t) due to expansion or contraction of the area
associated withc(t). Referring to Figure 5 we can manipulate this source term as

−

∮

c(t)

[ fok×u] ·dr = −

∮

c(t)

[u×dr ] · fo k = − fo
D
Dt

S(t) = −
D
Dt

[ fo S(t)] . (49)

The termu×dr represents the rate at which area is swept by the transport ofelement
dr by velocityu. When integrated around the entire contour and multiplied by the
planetary vorticity, the result measures the time-rate-of-change in the amount of
planetary vorticity contained withinc(t). If we define theplanetarycirculation as

Γ p
c(t) = fo S(t) (50)

then we can express theabsolutecirculation as

Γ a
c(t) = Γ r

c(t) +Γ p
c(t) =

∫

S(t)

(ζ + fo )dS=

∫

S(t)

η dS (51)

whereη is the absolute vorticity defined as the sum of the relative vorticity and the
planetary vorticity. We can now rewrite (48) as

d
dt

Γ a
c(t) =

∮

c(t)

[

−
∇p
ρ

]

·dr (52)

where (52) is an expression for the rate-of-change of absolute circulation associ-
ated with a contourc(t) that is observed in the Lagrangian reference frame. The
remaining source term on the RHS of (52) is the due to the differential acceleration
of particles alongc(t) produced by the pressure gradient force when variations in
the density field are present. The primary interest here is onthe situation when the
density field is constant9, i.e.ρ = ρo. In this situation we find

∮

c(t)

[

−
∇p
ρo

]

·dr =
−1
ρo

∮

c(t)

∇p ·dr = 0. (53)

The term∇p ·dr measures the gradient of the pressure field in the direction of dr .
So long as thec(t) loop traced out by the differentialdr elements is closed, the
integration of∇p ·dr aroundc(t) is guaranteed to be identically zero. This results
holds for any loop and for any scalar field. With the result provided in (53), we can
end the analysis with

9 When variations in density are present, as in the real atmosphere and ocean, then the RHS of (52)
serves as a source of vorticity. When considering the numerical simulation of this process, a critical
prerequisite is the guarantee that vorticity isnot created when these variations arenot present.
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d
dt

Γ a
c(t) =

d
dt







∫

S(t)

η dS






= 0 (54)

that states that the absolute circulation contained withincontourc(t) as it moves
with the fluid will be a constant in time; absolute circulation within c(t) is conserved
in time. The relationship also makes clear that, in general,the absolute vorticityis
not constant within the contourc(t). Only in the special case of non-diverengent
flow resulting in D

Dt [S(t)] = 0 will the mean value ofη be a constant within contour
c(t).

3.4.2 Conservation of Absolute Vorticity

The entire analysis in the section above is conducted in the Lagrangian reference
frame. The purpose of this section is to use RTT to transfer the conservation state-
ments into an Eulerian reference frame. Comparing (54) to (8) shows that the form
of conservation of absolute circulation shown in (54) is suitable for the application
of RTT. Applying RTT as stated (15) to (54), we find

d
dt

Γ a
c(t) =

d
dt







∫

S(t)

η dS






=

∫

S

[

∂η
∂ t

+ ∇ · (η u)

]

dS= 0. (55)

The form of (55) that is most suitable to finite-volume applications discussed below
is

∫

S

∂η
∂ t

dS+

∮

c

η u ·n dr = 0 (56)

that states that the time-tendency of absolute vorticity inregionS is equal and op-
posite to the rate at which absolute vorticity is being transported out of regionS.
A primary goal in the construction of the numerical model developed below is to
guarantee that the velocity field evolves in such a way as to mimic (56) exactly.

For the sake of completeness we note that in the limit ofdS→ 0 and allowingρ
to be nonuniform, (55) becomes

∂η
∂ t

+ ∇ · (η u) = −∇×

[

∇p
ρ

]

(57)

where the RHS source term shown in (52) has been retained. Andfinally, introduc-
ing the material derivative into (58) yields

Dη
Dt

+ η∇ ·u = −∇×

[

∇p
ρ

]

. (58)
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3.5 Summary of Evolution Equations

The analytic analysis of the continuous system is now complete. The approach has
been to identify conservation statements in the Lagrangianreference frame and to
use the Reynolds Transport Theorem to transfer these conservation statements into
an Eulerian reference frame. The value of the Reynolds Transport Theorem is that
it provides a machine-like approach to the derivation of evolution equations spec-
ified naturally in the integral form conducive to the development of finite-volume
methods.

Before turning to the process of discretization, a survey isconducted of the var-
ious flavors ofF = ma that can be used as the basis, or starting point, for the dis-
cretization process. The specific form ofF = ma that is chosen as the starting point
for the numerical model has a tremendous impact on the attributes of that numerical
model. Particular attention is paid to the ability of each form to satisfy bothF = ma
and conservation of absolute vorticity (56).

4 The Various Flavors of F= ma

In the continuous system, all forms of the momentum equationare equivalent.10

Since each form can be manipulated into any other form, thereis no difference be-
tween the various expressions ofF = ma. This is not true in the setting of discrete
numerics. Discretizing the continuous system implies the approximation of the con-
tinuous fields as a finite set of values that typically exist ona mesh that spans the
spatial extent of the system. In addition, the continuous operators such as∇, ∇· and
∇× are replaced with discrete approximations. One result of discretizing the mo-
mentum equation is that the various forms are no longer equivalent; we can not, in
general, manipulate one discrete form of the momentum equation into another dis-
crete form using the discrete operators. As a result, when wechoose the form of the
momentum equation used in a numerical model, we are saying a great deal about
what aspects ofF = ma are most important in the target application. Each form has
its own advantages and disadvantages and, thus, each form has its own niche to fill
in the modeling of the global atmosphere and ocean systems. This section provides
a brief review of the commonly used flavors ofF = ma with a discussion of their
respective advantages and disadvantages.

4.1 The Advective Form

The advective form of the momentum equation (33) is restatedhere for convienence:

10 The equivalence holds for smooth flows. If singularities development in the solution, the equiv-
alence between the various forms is more tenuous.
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Du
Dt

= − fo k×u−
1
ρ

∇ · p. (59)

This is essentially an evolution equation for one of the particles in the Lagrangian
system, such as particleX shown in Figure 1. Assume that the system is discretized
on a regular mesh composed of squares, such as the one shown inFigure 6. If at
some time, sayt = tb one particle is placed at the center of each square shown in
Figure 6, then the particle position and velocity at some later time, sayt = te, is
determined by integrating (59)along the particle trajectoryas

particles arrive on a regular mesh

particles begin on a regular mesh

X(tb)

X(tb)

u =

dX

dt

u =

dX

dt

integrate backward in time.

integrate forward in time.

X(tb) = X(te) −

te∫

tb

u dt

u(te,X(te)) = u(tb,X(tb)) +

te
∫

tb

[

−fo k×u−
1

ρ
∇ · p

]

dt

Determine by
interpolating velocity

on regular mesh 
to          positions.X(tb)

Integrate along 
trajectory.

X(te) = X(tb) +

te∫

tb

u dt

u(te,X(te)) = u(tb,X(tb)) +

te
∫

tb

[

−fo k×u−
1

ρ
∇ · p

]

dt

Integrate along 
trajectory.

Known as an
initial condition.

Lagragrian trajectory: Backward-in-Time Lagragrian trajectory: Forward-in-Time

X(te)

X(te)

Fig. 6: A graphical representation of forward Lagrangian and backward Lagrangian (i.e. the semi-
Lagrangian) method.

te
∫

tb

Du
Dt

= u(te,X(te))−u(tb,X(tb)) =

te
∫

tb

[

− fo k×u−
1
ρ

∇ · p

]

dt. (60)

Assuming that the particle positions and velocities are known at tb, the system is
solved forX(te) andu(X(te), te) as
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X(te) = X(tb)+

te
∫

tb

u dt, (61)

u(te,X(te)) = u(tb,X(tb))+

te
∫

tb

[

− fok×u−
1
ρ

∇ · p

]

dt. (62)

It needs to be emphasized that all of the source-term integrals on the RHS of (62)
are along the particle path starting at timetb at positionX(tb) and ending at timete
at positionX(te). While there are certainly challenges with the discrete evaluation
of the RHS of (62), a more basic problem with the approach is that the particle
positions at the end of the time step are, in general, no longer on a regular mesh
(see Figure 6). More forward-in-time steps will lead to a continual distortion of
particle positions due to the same shearing, stretching anddeformation mechanisms
illustrated in Figure 2. In order to prevent this continual distortion, (60) is generally
evaluatedbackward in timein what is commonly known as thesemi-Lagrangian
approach(see Staniforth and Cote (1991) for a complete review).

Instead of assuming that the particles exist on a regular mesh at the beginning of
the time step, the particles are assumed to reside on the regular mesh at the end of
the time step. In this situation, the particle positionsX(te) are required to form the
regular mesh shown in Figure 6. The challenge is then to determineX(tb) by inte-
grating particle trajectories backward in time, i.e. to determine the starting point of
the particles such that the particles ”arrive” on a regular mesh atte. In this approach
the system is solved forX(tb) andu(X(te),te) as

X(tb) = X(te)−

te
∫

tb

u dt, (63)

u(te,X(te)) = u(tb,X(tb))+

te
∫

tb

[

− fok×u−
1
ρ

∇ · p

]

dt. (64)

In general,u(tb,X(tb)) is determined by interpolating the velocity values known on
the fixed mesh at timetb to X(tb) locations. Equation (63) and (64) are coupled and
need to be solved jointly or iteratively. The challenges of evaluating the RHS along
the particle trajectory still remain.

The advantage of this approach is that exceptionally long time steps are possi-
ble.11 Since the integration is occurring along the particle characteristic, traditional
advective CFL time step constraints do not apply. An additional advantage is the
ease with which tracer constituents can be updated. Using (25) and integratingDq

Dt
from tb to te, we have

11 While longer time steps reduce the computational expense ofa given simulation, longer time
steps also often lead to less accurate results. Weighing therelative value of ”fast” versus ”correct”
is important in choosing the time step for a simulation.
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q(te,X(te)) = q(tb,X(tb)). (65)

q(tb,X(tb)) is determined by interpolating the tracer values from the regular mesh
to the departure pointsX(tb). Once this interpolation is complete, the updated tracer
values are known immediately sinceq is conserved along particle trajectories.

The disadvantages in this approach to solving the momentum equation are re-
lated to the lack of conservation of mass and tracer substance and the spurious
generation of vorticity. While these disadvantages pose severe problems in the con-
text of long-time simulations typical in climate applications, these disadvantages
have been successfully mitigated and/or circumvented for numerical weather pre-
diction applications where the integration time scales areon the order of days to a
week or two. Another alternative is to abandon the particle-centric approach of pure
semi-Lagrange schemes and move to a cell-based approach. [check; cross reference
Peter’s chapter]

The issues regarding conservation can be readily identifiedby comparing (65)
to (4). The conservation statement is that the mass-weighted integral ofq (i.e. Q)
is conserved in time when no sources or sinks are present. Yet(65) only ”sees”
the tracer concentrationq for an isolated number of particles and, furthermore, that
concentration is computed at locationsX(tb) via an interpolation procedure where
accuracy is generally much more important than conservation.

The issues regarding spurious vorticity generation are equally problematic in the
context of climate system modeling. In general, getting a handle on the evolution
of vorticity in a particle formulation is extremely difficult. Using (58) we could cer-
tainly ”tag” each particle with an associated vorticity, but the evolution of absolute
vorticity during the time step involves spatial gradients that are difficult to compute.
In addition, the same issue regarding lack of conservation occurs in the context of
vorticity as occurs in the context of tracer transport. And finally, even if one could
manage to evolve vorticity with the particles in a realisticmanner, it is not clear how
that information could be used to control the evolution of the prognostic velocity
field shown in (64).

4.2 The Flux Form

The flux form of the momentum equation is shown in (34), illustrated in Figure 4
and rewritten here for 2D planar flow as

∫

SE

∂ (ρ u)

∂ t
dS+

∫

cE

(ρ u) u ·ndc= −

∫

SE

fok×(ρ u) dS−
∫

cE

pn dc. (66)

The main advantage of the flux-form momentum equation is thatit is relatively easy
to insure that the transport of momentum (the 2nd term in (66)) is conservative,
i.e. momentum that exits one cells acrosscE enters a neighbor cell. This same con-
servation property occurs in the evaluation of the pressureforce; along a contour
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cE the pressure force results in an equal and opposite source ofmomentum for the
surfaces that sharecE. An additional advantage of the flux-form is that density is
incorporated into the prognostic variable. When using the flux-form of momentum,
the prognostic variable isρ u, whereas all the other forms haveu as the prognostic
variable. The merit in retainingρ u as the prognostic variable is that asρ → 0 the
prognostic variable goes to zero so long asu remains bounded. In the emerging class
of atmosphere and ocean models,ρ is often related to the vertical layer thickness,
soρ → 0 is equivalent to a layer collapsing to zero thickness when all of the mass in
a given layer at a given position is evacuated (e.g. Konor andArakawa (1997) and
Bleck and Smith (1990)). This is a common occurrence in numerical models and
the flux-form momentum equation provides ample opportunities to insure that the
discrete system remains well-behaved even in the the presence of ”massless” layers.

The primary disadvantage in the use of the flux-form momentumequation is that
the curl of (66) does not lead directly to a vorticity equation; vorticity and circulation
are purely kinematic quantities that are related to the∇×u not∇×(ρ u). As a result,
discrete models based on the flux-form of the momentum equation do not conserve
vorticity. In a discrete formulation of (66) every term has the potential to generate
spurious vorticity. If no guarantees can be provided in regards to the conservation
of circulation or vorticity, in general the only recourse isto increase the level of
dissipation to maintain a regular, well-behaved solution.If the level of dissipation
required to suppress the spurious generation of vorticity is significantly higher than
is physically warranted, one should expect the numerical simulation to be degraded
due to the physically-excessive dissipation.

The spurious generation of vorticity is due to errors in the discretization of the
system. Assuming smooth flows, these errors approach zero asthe order-of-accuracy
of the discrete operators is increased and/or as the grid resolution is increased. The
possibility certainly exists that these spurious errors are acceptably small, even for
climate simulations, when employing high-order numericalmethods and/or high-
resolution meshes.

4.3 The Vector-Invariant Form

The vector-invariant form is derived from the advective form (59) where the material
derivative is expanded into time tendency and transport terms using (5) to obtain

∂ u
∂ t

+(u ·∇)u = − fok×u−
1
ρ

∇ · p. (67)

If the (u ·∇)u term is replaced based on the following vector identity

(u ·∇)u = (∇×u)×u+∇
[

1
2
|u|

]

, (68)

we obtain
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∂ u
∂ t

= −η k×u−∇K −
1
ρ

∇p (69)

whereζ = k · (∇×u), η = ζ + fo and the kinetic energy is defined asK = 1
2 |u|.

Since the vector-invariant form of the evolution of momentum has no notion of a
material derivative, it is a natural expression of the velocity tendency at afixed point
in space. The interesting and powerful aspect of (69) is that whileu is defined at a
point, the integral ofu around a closed contour defines an area, a circulation and the
area-mean vorticity. This relationship will be fully developed in Section 5.

The η k×u term will be referred to as thenonlinear Coriolis forcebecause it
contains both the linear tendency termfo k×u and a portion of the nonlinear trans-
port term in the form ofζ k×u.

When considering the momentum equation we are primarily interested in the
velocity field that is needed for the evolution of the mass andtracer fields. Beyond
the velocity itself, we are interested in threederivedquantities: divergence, vorticity
and kinetic energy. Two of these three derived quantities appear explicitly in (69).
The appearance of vorticity and kinetic energy does not necessarily imply that the
necessary controls are available to insure that these quantities remain well-behaved
and bounded, but it is a step in the right direction.

In the context of climate modeling, it is difficult to find shortcomings in choos-
ing the vector-invariant form of the momentum equation as the basis for a discrete
model. This approach was successfully employed on hexagonal grids (Sadourny and
Morel, 1969) and on latitude-longitude grids (Arakawa and Lamb, 1981) decades
ago. The primary reason to not choose this form of the momentum equation is that
another form of the momentum equation, such as the advectiveform or flux form,
is a more natural choice for the application of interest.

4.4 The Vorticity-Diverenge Form

Since a great deal of emphasis has been placed on the importance of vorticity in the
above discussion, it is reasonable to considerexchangingthe prediction of the vector
velocity for the prediction of the vorticity and divergence. As discussed above, the
Helmoltz Decomposition guarantees that vorticity and divergence form a complete
description of the vector velocity field, so prognosingζ andδ is a theoretically-
sound approach (e.g. Heikes and Randall (1995), Ringler et al (2000) and Thuburn
(1997)). In addition, retainingζ as a prognostic variable leads to a strong control
over its evolution.

We generate the evolution equations forζ andδ by taking∇× and∇· of the
momentum equation, respectively. As long as we are working with the continuous
equations, we can start with any form of the momentum equation and obtain the
same resulting vorticity and divergence equation. Starting with the vector-invariant
form of the momentum equation expressed in (69) and applyingthek ·∇× and∇·
operators yields
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k ·∇×
∂ u
∂ t

=
∂ ζ
∂ t

= ∇×

[

−ηk ×u−∇K −
1
ρ

∇p

]

, (70)

and

∇ ·
∂ u
∂ t

=
∂ δ
∂ t

= ∇ ·

[

−ηk ×u−∇K−
1
ρ

∇p

]

. (71)

Focusing on the vorticity equation, we can recover the Eulerian expression derived
in (57) written as

∂η
∂ t

+ ∇ · (η u) = −∇×

[

∇p
ρ

]

. (72)

The first important aspect to note in (72) is thatk ·∇× [−ηk ×u] = ∇ · (η u). The
application of the curl operator to the nonlinear Coriolis force results in the diver-
gence of the absolute vorticity flux. The second important aspect to note in (72) is
that∇×∇K = 0; the curl of the gradient is identically zero.

The divergence equation can be expressed as

∂ δ
∂ t

+ ∇ ·
(

η u⊥
)

= −∇2K −∇ ·

[

1
ρ

∇p

]

(73)

whereu⊥ = k×u.
The primary advantage of using the vorticity-divergence form of the velocity evo-

lution equation is the ability to retain (72) as a prognosticequation. In the presence
of uniform density, the time-rate-of-chance of absolute vorticity is the divergence of
the absolute vorticity flux. The absolute vorticity flux can be computed numerically
using advanced transport algorithms that can guarantee that η will remain smooth
at the grid-scale without the introduction of excessive dissipation.

The primary disadvantage of this formulation can be seen in (40) and (41). After
each time step, two elliptic equations must be inverted in order to compute the ve-
locity field that will be required to to compute the tendency terms in (72) and (73)
on the next time step. For simple domains, such as the global atmosphere, inverting
(40) and (41) is straightforward but relatively expensive in regards to computational
effort. In more complicated domains, inverting (40) and (41) is analytically chal-
lenging and, at least to date, computationally prohibitive.

5 The process of discretization

In this section the continuous equations developed above will be discretizedin or-
der to obtain a numerical model for the evolution of momentum. The process of
discretization truncates the infinite degrees of freedom that are present in the con-
tinuous system to a finite number of degrees of freedom in order to produce a
computationally-tractable algebraic problem suitable for existing computer archi-
tectures. When the numerical methods are based on traditional finite-volume tech-
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niques, such as those to be developed below, the spatial extent of the continuous
system is decomposed intocellsand the temporal extent of the continuous system
is decomposed intotime steps. The discussion here will be limited to the spatial
discretization of the continuous system.

The possibilities for the specific form the discrete momentum equation can
quickly become unwieldy. For example, the optimal way to decompose the sphere
into cells is still very much a research topic. Even if we limit the scope to decom-
positions that attempt to produce quasi-uniform meshes thechoices include, at a
minimum, the cubed-sphere [check reference Nair chapter],Voronoi tessellations
[check reference Ju chapter] and Delaunay triangulations [check reference Ju chap-
ter]. Furthermore, once a mesh is chosen there are at least five different staggering
arrangements of the prognostic variables: A-grid, B-grid,C-grid, D-grid, and E-grid
(reference Thurburn chapter). In addition, we can choose one of the four viable fla-
vors ofF = ma to discretize. So three meshes times five grid-staggerings times four
momentum forms leads to sixty permutations. And this is before we even consider
the specification of the numerical operators.

A ”down-select” of the 60 permutations is required. Some of this down-select can
be made based on the target application. Some of this down-select can be based on
the wealth of experience that has been gained over the last forty years. And finally,
some of this down-select can be made based on an intuition of what method(s)
are likely to emerge as the preferred-alternative over the next decade. Furthermore,
the selection method should not be made as ana la carteprocess; some choices
of grid staggering are clearly inappropriate for certain choices in the form of the
momentum equation. Rather, the process is similar to atable d’hotewhere choices
are made with the prior knowledge of the other choices and theintention to produce
the best overall productas opposed to the best single course. The courses in this
chapter’stable d’hoteare discussed directly below.

5.1 Target application: Joint Climate-Weather Prediction

The traditional gap between atmosphere climate modeling and atmospheric weather
prediction modeling is disappearing. Atmosphere climate models have been used to
conduct global cloud resolving simulations (Tomita et al, 2005). Weather prediction
models have been used to study regional climate change (Leung et al, 2004). While
each model is finding application outside what has been its core mission, these uses
are clearly ”off-label applications” where, as expected, the quality of the results
vary. The criteria driving the choices in model specification (i.e. the choice of mesh,
grid staggering and form of momentum) have traditionally been very different in the
climate and weather modeling communities. Climate applications have emphasized
concepts related to mass, tracer and vorticity conservation, as well as long-time
stability of numerical simulations. Weather applicationshave emphasized concepts
related to local accuracy and simulation throughput. The driving need is for asingle
atmosphere model to excel at both climate applications and weather applications.
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So the target application for this discussion is joint climate-weather simulations.
As a result, the choices made below may differ from the choices made if the target
application was solely climate simulation or solely weather prediction. And finally,
these same choices will be applicable to a unified ocean modelthat is appropriate
for both global ocean simulations and regional eddy-resolving simulations.

5.2 Grid staggering: C-grid Staggering

The choice of the grid staggering is very much constrained bythe target applica-
tion. Weather prediction models have often used a collocated staggering of vari-
ables in order to apply semi-Lagrangian methods to the advective form of the mo-
mentum equation (Ritchie et al, 1995). This is a computationally efficient method
that is greatly appreciated in operational settings where simulation throughput is
often a driving factor in model specification. Other grid staggerings, such as the
B-grid (Zhang and Rancic, 2007) and C-grid staggering (Skamarock et al, 2008),
have been used with success in both weather and climate models. The choice of the
C-grid staggering, when paired with the other choices, willalso allow for exact con-
servation of absolute vorticity12. And more importantly, the C-grid staggering will
allow for the precise control of the evolution of vorticity in time through the use of
advanced flux-limiting transport algorithms. In addition,the C-grid staggering ex-
cels in the simulation of divergent modes that dominate the cloud-resolving scales
of motion (Randall, 1994). The principle difficulty with theC-grid staggering is that
while the normal component of velocity is retained as a prognostic variable, the
tangential component of velocity is needed to compute the nonlinear Coriolis force
[check reference Thuburn chapter]. The robustness of numerical schemes built with
a C-grid staggering is very much dependent on the method usedfor the reconstruc-
tion of the tangential velocity component.

5.3 Mesh: Locally-orthogonal meshes

One of the residual benefits of using the C-grid staggering isthat it accommodates
a wide class of meshes. The critical aspect of the C-grid staggering is that the edge
that separates two cells is orthogonal to the line segment connecting the centers
of the two associated cells [check reference Ju chapter]. The local orthogonality
leads to compact numerical operators that are approximately 2nd-order accurate in
space (Ringler et al, 2010). The local orthogonality, C-grid staggering and vector-

12 While the target applications involve full 3D simulations of the atmosphere and ocean, the
process of discretization is best elucidated in 2D. The 3D system is clearly more complicated and
is not a simple extension of the 2D system. Still, the conceptof vorticity dynamics and conservation
of (potential) vorticity are equally important in the full 3D system



Momentum, vorticity and transport 29

invariant form of momentum will lead to a strong connection between acceleration
and vorticity transport.

5.4 Form of momentum equation: The Vector-Invariant Form

The use of the vector-invariant form of the momentum equation has a long and
successful track record in climate modeling dating back to at least (Arakawa and
Lamb, 1981). Weather applications have tended to use other forms, such as the flux
form (e.g. Weather and Research Forecast (WRF) model (Skamarock et al, 2008) in
order to conserve momentum and to obtain higher formal accuracy or the advective
form (e.g. European Center for Medium-Range Weather Forecasts (ECMWF) model
(Ritchie et al, 1995) in order to employ semi-Lagrangian methods.

The comparison of the vector-invariant form to the flux form offers an important
insight into conservation. Given all of the choices made above (i.e. climate-weather
applications, C-grid staggering, and locally-orthogonalmeshes), either the vector-
invariant form or the flux form is a viable choice. If one chooses the flux form
of the momentum equation, then the prognostic variable,ρ u, will be conserved in
the numerical model. As derived below, if one chooses the vector-invariant form of
the momentum equation, then absolute vorticity will be conserved in the numerical
model. The choice between the vector-invariant form or the flux form of momentum
comes down to the relative importance of conserving absolute vorticity or conserv-
ing momentum in the target application. The choice here is tovalue the former more
than the latter.

6 Building a Discrete Model

This section will develop the numerical model that uses a C-grid staggering of the
vector-invariant form of the momentum equation discretized on a locally-orthogonal
mesh. The analysis will focus on the relationship between the time-tendency of the
velocity field and the absolute vorticity flux.

6.1 Defining the Mesh and Location of Variables

For this discussion we will assume that the domain is decomposed into a set of
squares as shown in Figure 7. As seen in Figure 7, the scalar function,Φ, is defined
at the center of each cell. The component of velocity in the direction normal to
each edge will be integrated in time with a prognostic equation. Vorticity points
are defined at the corners of the scalar function cells and will be associated with
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the mesh denoted by the dashed lines. The assumption is that the mesh continues
indefinitely in all horizontal directions.

mass point

velocity point

vorticity point

Fig. 7: The mesh used in the construction of the discrete system.

The choice of squares as the cell shape is based on several reasons. A mesh
composed of squares is clearly locally-orthogonal, so it meets the requirement listed
in Section 5. A mesh composed of squares is also the most accessible mesh; the
analysis presented here can be easily replicated in development environments such
as MATLAB.

While the derivation will be completed for a mesh composed ofsquares, conformally-
mapped cubed-sphere meshes, Voronoi tessellations and Delaunay triangulations
are all accommodated in the analysis13, i.e. the results found for the mesh com-
posed of squares will be applicable to these more practical meshes. In an effort to
point the way toward extensions to meshes that are used to discretize the surface
of the sphere, an indexing nomenclature will be chosen that is appropriate for any
unstructured mesh.

13 Cubed-sphere grids produced by projections that result in amore uniform distribution of nodes
at the at expense of orthogonality (e.g. gnomonic-projected cubed-sphere meshes) are not accom-
modated in this analysis
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6.2 Continuous Prognostic Equation

We discretize the vector-invariant form of the momentum equation as

∂ u
∂ t

+ η k×u = −∇Φ (74)

where−∇Φ = −∇
(

p
ρo

+K
)

represents the gradient terms on the RHS of (69).

In the full 3D system,ρ will vary in space and, as a result, the RHS can not be
written as the gradient of a potential. Here, the analysis assumes that the density is a
constantρo in order to demonstrate that the largest contribution to theRHS of (69)
(i.e. theρo contribution) does not project onto the vorticity dynamicsof the system.
The system can be closed by the addition of an equation describing the evolution of
fluid pressure,p. For reasons discussed in the Section 1, we will limit the analysis
to the evolution of velocity.

Thek×u operation acts to rotate the vector velocity by 90 degrees inthe counter
clockwise direction. If we defineu⊥ = k×u as in (73) then (74) is expressed as

∂ u
∂ t

+ η u⊥ = −∇Φ. (75)

6.3 Discrete Prognostic Equation

At each cell edge the unit normal vectoreN is defined to point toward the right or
toward the top as appropriate.14 In addition, the tangential unit vector is defined as
eT = k × eN. The discrete version of (75) is generated by takingeN· (75) at each
edge to yield

∂Nk

∂ t
− η̂kT̂k = −(eN ·∇Φ)k (76)

where, as shown in Figure 8,Nk = eN ·u represents the component ofu in the nor-
mal direction andT̂k = −eN · u⊥ represents the component ofu in the tangential
direction. All variables with hats,̂( ·), require further specification.

The first example of the simplicity afforded by the assumption of a locally-
orthogonal mesh is found on the RHS of (76). The RHS of (76) requires the de-
termination of the component of∇Φ in theeN direction. SinceeN is parallel to the
vector connecting theΦ points on either side of the edge, the specification of the
(eN ·∇Φ)k can be approximated (with 2nd-order accuracy) at velocity point k1 as
simply [Φi4 −Φi1]/dck1 (See Figure 8). Using this representation of the gradient
forcing, (76) at velocity pointk1 is rewritten as

14 The choice of the direction of the local normal vector is entirely arbitrary. The choice made here
is for the convenience of presentation.
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eT = k × eN

eT

eN

Φi1
Φi2

η̂k1

ηj1
ηj2

Φi3
Φi4

Φi5

Φi6

Nk1
eN

Tk1
eT

d
c
k
1

k2

k3

k4k5

k6

k7

Fig. 8: The detailed description of the velocity and vorticity mesh.

∂Nk1

∂ t
= η̂k1T̂k1 − [Φi4 −Φi1]/dck1 (77)

wheredck1 is the distance betweenΦi4 andΦi1. While the various ways to specify
η̂k1 is given in Section 7, at this pointη̂k1 can be constrained as

η̂k1 = f (η j1,η j2). (78)

The absolute vorticity used to compute the nonlinear Coriolis force,η̂T̂, at velocity
points is only a function of the vorticities defined at the endof the edge.15 In order
to complete the specification of (77) a definition forT̂k1 is required. The algorithm
for computingT̂k1 is also given in Section 7.

6.4 Discrete Derived Equation

The importance of discrete derived equations is frequentlyoverlooked. Attention
is more often focused on the analysis of the discrete prognostic equations since

15 Other approaches to specifyinĝη are possible and often preferable. See (Sadourny, 1975) and
(Ringler et al, 2010) for a more in depth discussion of the possible alternatives.
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these are the variables that are explicitly tracked in time.In reality, an analysis of
the discrete derived equations generally provides important insights into the chosen
numerical method. The purpose of this section is to demonstrate that the discrete
system can mimic the continuous system in terms of the vorticity dynamics. The
analysis carried out in Section 3.4.1 and Section 3.4.2 is repeated here, but in the
setting of a discrete system. The primary property of the continuous system that the
discrete system needs to mimic is

d
dt

Γ a
c(t) =

d
dt







∫

S(t)

η dS






=

∫

S

[

∂η
∂ t

+ ∇ · (η u)

]

dS= 0. (79)

The absolute circulation following a contourc(t) is conserved when the fluid den-
sity is constant (as is assumed here) and when no frictional forces are present. The
challenge is to demonstrate that absolute circulation is conserved following a con-
tour c(t) even when the discrete system does not directly prognose circulation or
vorticity. Stated another way, the goal is to demonstrate that the evolution of the dis-
crete velocity field,Nk, is consistent with the kinematic constraints imposed by (79).
Since the velocity evolution equation is written in an Eulerian reference frame, the
analysis is most direct when the focus is on the third part of (79). The integration of
dScan span a single cell or a collection of cells that are contained in a single loop.

The analysis begins by taking the discrete curl of the velocity tendency equation
around thej1 vorticity cell shown in Figure 8. The discrete circulation operator is
shown in Figure 9. As seen in Figure 9 the discrete curl has four terms, one for
each edge of a vorticity cell. Using the labels shown in Figure 9, the curl operator at
vorticity point j1 can be expressed as

1
A

∮

c

u ·dr ≈
1

A j1

4

∑
m=1

Nkm eN ·dr km (80)

whereA j1 is the area of the vorticity cellj1. The dot producteN ·dr km accounts
for whether or notNkm eN points in the same or the opposite direction asdr km. In
addition, |dr km| = dckm to account for the distance of each segment of the loop
around vorticity cellj1.

A discrete equation for the evolution of absolute vorticityis constructed by ap-
plying the curl operator to each term in (77). In order to provide a clear representa-
tion of the curl operations, we will focus on vorticity pointj1. Beginning with the
discrete curl of the time tendency ofNk, we find

1
A

∮

c

∂u
∂ t

·dr ≈
1

A j1

4

∑
m=1

∂Nkm

∂ t
eN · dr km =

∂ζ j1

∂ t
=

∂η j1

∂ t
(81)

where the curl operator has been moved inside the time derivative and we have used
the fact that∂ fo

∂ t = 0. Now moving to the gradient term on the RHS of (77) we find
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Fig. 9: A graphical description of the discrete curl operator.

−
1
A

∮

c

∇Φ ·dr ≈
1
A j

[

(Φ2−Φ1)

dck2

dck2 +
(Φ3−Φ2)

dck3

dck3 −
(Φ3−Φ4)

dck4

dck4 −
(Φ4−Φ1)

dck1

dck1

]

(82)
where the distance used in the gradient calculation and the distance used in the curl
operator cancel on each term. After removing these offsetting terms we find

1
A

∮

c

∇Φ ·dr ≈
1
A j

[(Φ2−Φ1)+ (Φ3−Φ2)+ (Φ4−Φ3)+ (Φ1−Φ4)] . (83)

Just as in the continuous system, the curl of the gradient is identically zero. This
property in the discrete system insures that forces in the velocity tendency equation
of the form∇Φ, whereΦ is any scalar field defined at mass points, do not generate
spurious vorticity.

Moving to the final term, the nonlinear Coriolis force, we find

1
A

∮

c

η u⊥ ·dr ≈−
1

A j1

4

∑
m=1

η̂kmT̂k, eNkm
·dr km. (84)

Expanding the summation yields
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−
1
A j

4

∑
m=1

(

η̂ T̂ eN
)

km
·dr km =−

1
A j

[

+
(

η̂T̂ dc
)

k1
−

(

η̂ T̂dc
)

k2
−

(

η̂T̂ dc
)

k3
+

(

η̂T̂ dc
)

k4

]

.

(85)
Combining all of the curl operators to produce a discrete equation for the evolution
of absolute vorticity yields

∂η j1

∂ t
+

1
A j1

[

+
(

η̂T̂ dc
)

k1
−

(

η̂T̂ dc
)

k2
−

(

η̂T̂ dc
)

k3
+

(

η̂T̂ dc
)

k4

]

= 0. (86)

Comparing (86) to its continuous counterpart in (57), we seethat the discrete vor-
ticity evolution equation is an analog to the continuous system when

∇ · (η u) ≈
1

A j1

[

+
(

η̂T̂dc
)

k1
−

(

η̂T̂ dc
)

k2
−

(

η̂T̂ dc
)

k3
+

(

η̂ T̂dc
)

k4

]

. (87)

The RHS of (87) is an approximation to the weak form of the divergence operator.16

It is critical to note that in this discrete systemvorticity is transported by the recon-
structed, tangential velocity field. It is useful to recast (86) as an expression for the
circulation within cell j1 by moving the area into the time derivative as

A j1
∂η j1

∂ t
=

∂Γ a
j1

∂ t
= −

[

+
(

η̂T̂ dc
)

k1
−

(

η̂T̂dc
)

k2
−

(

η̂T̂ dc
)

k3
+

(

η̂T̂ dc
)

k4

]

. (88)

Γ a
j1

represents the absolute circulation around the dual cellj1. This result can be
generalized to an arbitrary contour by progressively adding cells. Equation (88) rep-
resents a contour containing thej1 vorticity cell. The discrete equation governing
the evolution of circulation for thej2 vorticity cell can be expressed as

∂Γj2

∂ t
= −

[

−
(

η̂T̂ dc
)

k1
+

(

η̂T̂dc
)

k5
+

(

η̂T̂ dc
)

k6
−

(

η̂T̂ dc
)

k7

]

. (89)

The edge shared by vorticity cellsj1 and j2 is edgek1. The term
(

η̂T̂ dc
)

k1
appears

in both (88) and (89), but with opposite signs. The evolutionof absolute circulation
formed by the contour containing vorticity cellj1 and j2 is thus

∂ (Γj1 +Γj2)

∂ t
=−

[

−
(

η̂T̂ dc
)

k2
−

(

η̂T̂ dc
)

k3
+

(

η̂T̂dc
)

k4
+

(

η̂T̂ dc
)

k5
+

(

η̂T̂ dc
)

k6
−

(

η̂ T̂dc
)

k7

]

(90)
where the shared edge between vorticity cellsj1 and j2 cancels. The edges that
remain all lie on the boundary of the contour and account for the transport of cir-
culation across the boundary of the region. The mean absolute vorticity within the
contour can always be determined by dividing the absolute circulation by the area

16 The approximation is 2nd-order accurate assuming suitablechoices forη̂ andT̂ .
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enclosed in the contour. This analysis is sufficient to statethat the discrete sys-
tem conserves absolute circulation exactly. By extension,the discrete system con-
serves the area-mean absolute vorticity exactly. Both of these conservation state-
ments mimic the findings in the continuous system. What is somewhat surprising is
that these conservation statements have been provenwithout even having to specify
η̂ or T̂. In that, the conservation statements hold for anyη̂ and anyT̂. The two es-
sential ingredients required for these conservation statements to hold in the discrete
system are the use of the vector-invariant form of the momentum equation and the
discrete analog of the∇×∇Φ ≡ 0 identity.

The final and most important conclusion of this section is thefollowing: The time
tendency of velocity due to the nonlinear Coriolis force

(

η̂ T̂
)

is the per-unit-length
absolute vorticity transport in the direction normal toeN. This is key to providing
a direct handle on the vorticity dynamics of the discrete system via the discrete
momentum equation.

7 Constraining the Evolution of Velocity through the Transport
of Absolute Vorticity

In the preceding section we were able to accomplish three goals. First, we were able
to exhibit that absolute circulation is conserved for any closed loop in the discrete
system. Second, the conservation statements related to circulation and vorticity hold
exactly in the discrete system, even though neither are retained as prognostic vari-
ables. And finally, these conservation statements hold without having to specify the
form of the reconstructed tangential velocity or the value of absolute vorticity used
to compute the velocity tendency due to the nonlinear Coriolis force. Given this last
statement, it should be clear that conservation alone is insufficient in specifying an
adequate numerical model. The general framework allows us to specifyη̂ andT̂ to
meet other constraints that we deem important. The following discussion is meant
to demonstrate the flexibility, or lack thereof, in the choice of η̂ andT̂. It turns out
that there is some flexibility in the choice of the former and essentially no flexibility
in the choice of the latter. As above, constant density and non-divergent flow are
assumed.

7.1 Considerations when specifyinĝη

The specification of̂η should be made with two concerns in mind. The first is that
since the nonlinear Coriolis forceη k×u is alway orthogonal tou, the nonlinear
Coriolis force neither produces nor destroys kinetic energy, i.e. u ·(η k×u) = 0.
This is essentially a concern related to the energetics of the discrete system. The
second concern is how the specification ofη̂ will influence the structure of the
evolving vorticity field. For example, we would like to make some guarantees on
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the long-time smoothness of the discrete vorticity field. This is essentially a concern
related to the vorticity dynamics of the discrete system. The goal, in my view, should
be the rigorous guarantee of both of these concerns. In that,the guarantee that the
choice ofη̂ neither produces or destroys kinetic energyandthat this same choice in
η̂ promotes long-term smoothness in the vorticity field. Giventhe analysis and the
anecdotal evidence presented in (Ringler et al, 2010), thisgoal might be possible.

For the discussion presented here, the focus will be on choosing η̂ such that the
evolution of absolute vorticity is monotone in time.17 In the context of transport,
monotonicity implies that the vorticity field at some timet can be determined as a
convex interpolationof the vorticity field at some previous time (Godunov, 1959).
Since the interpolation process isconvex, vorticity values at some previous time are
given weights between zero and one. Thus monotonicity implies that the solution of
vorticity at any timet is bounded from above and below by the vorticity at any pre-
vious time. While it is true that only in the special case of non-divergent flow should
we expect absolute vorticity to evolve monotonically in time, extensions of this idea
to potential vorticity holds for general 3D flows. If we assume an arbitrary velocity
field that is non-divergent, then the continuous vorticity equation (58) reduces to

∂η
∂ t

+ ∇ · (η u) =
∂η
∂ t

+u ·∇η =
Dη
Dt

= 0, (91)

which states that the absolute vorticity attributed to a particle (e.g. Figure 1) is in-
variant in time. Since we are not in a Lagrangian reference frame where tracking
particles is an option, the discrete model will have to attempt to mimic (91) in an
Eulerian setting. When a property is conserved along particle trajectories it means
that the quantity itself (e.g.η) and all moments of that quantity (e.g.ηn wheren is
any integer) are also conserved along particle trajectories. With only one degree of
freedom in the discrete system (i.e.η̂), we are woefully ill-equipped to mimic the
richness contained in the continuous system and, therefore, must make some tough
choices regarding how to specifŷη . The goal here is not to determine an optimal
specification ofη̂ but rather to demonstrate that we canguaranteea monotone evo-
lution of vorticity even when the only prognostic variable is the normal component
of velocity at cell edges.

Assuming that the discrete velocity field is non-divergent,guaranteeing a mono-
tone evolution of the discrete absolute vorticity field is straightforward. Focusing on
edge(k1), we specifyη̂k1 as

i f T̂k1 ≥ 0, η̂k1 = η j1 (92)

i f T̂k1 < 0, η̂k1 = η j2 (93)

17 Discussing the evolution of potential vorticity, as opposed to absolute vorticity, would be more
relevant here. But for the reasons discussed in the Introduction, we will limit the scope to the
evolution of absolute vorticity. Only in the special case ofnon-divergent flow is the evolution of
absolute vorticity monotone. In addition, the topic of transport (monotone or otherwise) warrants
an entire chapter to itself.
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in that we always choose the value ofη̂ by picking the vorticity valueupstream of
T̂. While this is essential the low-order, monotone solution used in (Zalesak, 1979),
it immediately generalizes to higher-order. Without loss of generality, assume that
T̂ ≥ 0 at some instant in time, then the evolution equation ofNk1 is written as

∂Nk1

∂ t
= η j1T̂k1 − [Φi4 −Φi1]/dck1. (94)

If η̂ is chosen based on the approach in (92), then the absolute vorticity associated
with the evolvingNk velocity field will be monotone. To be clear, the donor cell
approach results in excessive diffusion and this discussion is in no way meant to
advocate for the use of (92); it is employed here for demonstration purposes only.
In practice, we can apply state-of-the-art transport algorithms for the computation
of the absolute vorticity flux,̂η T̂, and use that flux as the nonlinear Coriolis force
in the velocity tendency equation.

7.2 Considerations when specifyinĝT

It turns out that there is essentially no flexibility in the choice ofT̂. The mesh used
here is essentially identical to that used in (Arakawa and Lamb, 1981). In that work,
the reconstructed velocity is specified as

T̂k1 = −
1
4

(

Nk7 +Nk2 +Nk4 +Nk5

)

. (95)

See Figure 8. The reasoning behind this choice is not particularly clear in the
(Arakawa and Lamb, 1981) manuscript. Based on the more recent analysis con-
ducted on general unstructured meshes with C-grid staggerings in (Thuburn et al,
2009) and (Ringler et al, 2010), it is clear that the critically important aspect of the
reconstructed̂T field is that the

[

∇ ·
(

T̂ eT
)]

j be an interpolation of the neighboring

[∇ · (NeN)]i values; the divergence computed at vorticity points based on T̂k mustbe
an interpolation of the divergence computed at mass points based onNk.

The importance and significance of this requirement can be clearly seen in the
following example. Suppose the continuous system is characterized with an initial
condition of uniform absolute vorticity field being transported by a non-divergent
flow. From (58) we see that the solution for all time is simply∂η

∂ t = 0. Also suppose
that the discrete velocity fieldNk is chosen such that it produces a uniform abso-
lute vorticity field and is also non-divergent. The discretesystem from (86) can be
expressed as

∂η j1

∂ t
+

ηo

A j1

[

(

T̂ dc
)

k1
+

(

T̂dc
)

k2
−

(

T̂ dc
)

k3
−

(

T̂dc
)

k4

]

= 0 (96)

The only way to reproduce the solution of∂η
∂ t = 0 for all time is to require that
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[

(

T̂dc
)

k1
+

(

T̂ dc
)

k2
−

(

T̂dc
)

k3
−

(

T̂ dc
)

k4

]

= 0. (97)

Equation (97) requires that the divergence of the reconstructed, tangential velocity
at vorticity points is also zero. If one can build a general algorithm for the recon-
struction ofT̂ that produces

[

∇ ·
(

T̂ eT
)]

j = 0 when[∇ · (NeN)]i = 0, then we have
sufficient proof that the divergence computed at vorticity points will be a convex in-
terpolation of the divergence computed at mass points. Unfortunately, the failure of
some C-grid staggered model to enforce this essential feature in the reconstruction
of the tangential velocity has lead to (sometime severes) limitations in the robustness
of the numerical model and the quality of the numerical solutions.

8 Final Thoughts

This analysis provided an end-to-end discussion of one aspect in the construction of
a dynamical core, namely the derivation and approximation of the equations related
to the evolution of momentum. As much as possible, the analysis is developed with
the aid of the Reynolds Transport Theorem. In addition to providing a rigorous
means to recasting conservation statements made in the Lagrangian reference frame
to statements applicable to the Eulerian reference frame, the Reynolds Transport
Theorem produces evolution equations cast in a weak, integral form that fit naturally
into traditional finite-volume approaches.

The analysis lingered and continually revisited the relationship between the evo-
lution of velocity and vorticity dynamics. The reason for such a strong emphasis
on this relationship is that while the evolution of momentumhas to be faithful to
F = ma, it also has to respect the kinematic constraints implied byconservation
statements related to vorticity and circulation. First, the relationship has to be un-
derstood in the continuous setting, then the relationship has to be accommodated in
the development of the discrete system of equations.

The system of equations that one chooses as the starting point for constructing
a discrete model is a critical moment in the construction of adynamical core. This
choice will have a profound impact on the quality of the simulations. Understand-
ing the anticipated use of the numerical model is a prerequisite to making sound,
defensible choices for the components of a dynamical core. For this reason, an en-
tire section related to the ”process of discretization” is included. While the actual
choices made in that section are highly biased, the purpose of the section is to hope-
fully motivate the extreme importance of choosing numerical methods based on a
target application.
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